ASSESSING LONG-TERM CHANGES IN VEGETATION

LUCY RIDDING
Quantifying long-term changes in vegetation

- Important for assessing drivers of change
- Archived biological records
- Comparable method and re-location
- Relatively little has been done on calcareous grassland

Photos: Peter Hawes
Terry Well’s Survey – 1970 and 1990

- Examine the floristic composition of chalk grassland overlying Celtic field systems
Parsonage Down

- National Nature Reserve (in 1973) - 276 ha
- Maintained by grazing – no fertilisers are used
- CG2 grassland (Festuca ovina - Avenula pratensis grassland)
Re-locating the transects

RCHM MAY 1970

- TW's points
- P unit of estimated plough destruction
- Direction of over ploughing

Nature scarp uncertain

FORMER CELTIC FIELDS OBLITERATED

Pencilled measurements made by TCE on 26 Aug. 1980 as an aid to locate transect

NERC SCIENCE OF THE ENVIRONMENT
Re-locating the transects
Repeating the methods

- 4 transects
- 20 cm quadrats at 3ft intervals
- Species cover recorded using the DOMIN scale

<table>
<thead>
<tr>
<th>Transect</th>
<th>Length (ft)</th>
<th>No. of Quadrats</th>
<th>First Survey</th>
<th>Second Survey</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>111</td>
<td>38</td>
<td>18/05/1970</td>
<td>20/08/1990</td>
</tr>
<tr>
<td>2</td>
<td>102</td>
<td>35</td>
<td>19/05/1970</td>
<td>21/08/1990</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>21</td>
<td>21/05/1970</td>
<td>21/08/1990</td>
</tr>
<tr>
<td>4</td>
<td>60</td>
<td>21</td>
<td>22/05/1970</td>
<td>22/08/1990</td>
</tr>
</tbody>
</table>
Soil analysis

CHEMICAL DATA

<table>
<thead>
<tr>
<th>Soil Name</th>
<th>Ca [mg/100g]</th>
<th>Mg [mg/100g]</th>
<th>FeO-P [mg/100g]</th>
<th>P [%]</th>
<th>N [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>20S 0-5cm</td>
<td>610</td>
<td>11</td>
<td>2.2</td>
<td>0.14</td>
<td>0.39</td>
</tr>
<tr>
<td>20S 5-10cm</td>
<td>610</td>
<td>15</td>
<td>2.2</td>
<td>0.14</td>
<td>0.39</td>
</tr>
<tr>
<td>20S 0-5cm</td>
<td>610</td>
<td>11</td>
<td>2.2</td>
<td>0.14</td>
<td>0.39</td>
</tr>
<tr>
<td>20S 5-10cm</td>
<td>610</td>
<td>15</td>
<td>2.2</td>
<td>0.14</td>
<td>0.39</td>
</tr>
</tbody>
</table>

All results expressed on a dry weight basis.
<table>
<thead>
<tr>
<th>Species</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zerna erecta</td>
<td>Bromopsis erecta</td>
</tr>
<tr>
<td>Helicotrochon pubescens</td>
<td>Avenula pubescens</td>
</tr>
<tr>
<td>Leontodon autumnal</td>
<td>Scorzoneroides autumnalis</td>
</tr>
</tbody>
</table>
Species richness

(Kruskal-Wallis $X^2 = 197.12$, df = 2, p < 0.001)

Neotinea ustulata
Anacamptis morio
Spiranthes spiralis
Euphrasia nemorosa
Coeloglossum viride
Positive indicator species for CG2

- **Cirsium acaule**
- **Linum catharticum**
- **Leontodon hispidus**
- **Lotus corniculatus**
- **Leucanthemum vulgare**
- **Filipendula vulgaris**

![Graph showing number of CG2 plant species over years](image)
Species composition

Bromopsis erecta
Cerastium fontanum
Lolium perenne
Ononis spinosa
Species traits - Plant height

(Kruskal-Wallis $X^2 = 176.82$, df= 2, p < 0.001)
Future work

• Explore further traits
• Environmental factors
• Soil results
Acknowledgements

• Peter Hawes
• Robin Walls
• Roger Marris
• Julie Swain, Richard Osgood and Chris Maple
• Oli Pescott
• Richard Pywell
• Gloria Dos Santos Pereira
Thank you