Identifying 'faithful neighbours' of rare plants in Britain; an application of the TPP dataset

Simon Smart (<u>ssma@ceh.ac.uk</u>), Kevin Walker, Peter Henrys, Oli Pescott, Rob Marrs

Centre for Ecology & Hydrology, BSBI Plant Unit

Upper Teesdale... recent trends:

- Warmer winters...
- More rabbits...
- More disturbance...
- More weedy generalists

We know a lot about common species habitat preferences...

 Here we quantify the response of Calluna vulgaris to vegetation height and soil fertility

We can then try to model the impact of global change drivers

Habitat suitability scores for *Calluna vulgaris* in the bog habitat in Wales

The driver in this instance is the impact of N deposition on soil Carbon: Nitrogen ratio.

Conditions are expected to be less favourable in 2100.

.. We can do this because we have lots of data for common species.

Rare species are more of a problem:

- Data are less readily available.
- Populations are easily overlooked.
- Populations are small and therefore vulnerable.

But, If we could determine which sets of more common species tend to grow with a rare species we could address conservation and survey problems such as;

- Early-warning monitoring of a possible reduction in the suitability of conditions for extant rare plant populations by reference to changes in the presence of neighbouring plant species.
- Evidence to support assessment of the suitability of sites for reintroduction of the rare species.
- Locating new or pre-existing populations based on identifying floristically appropriate vegetation patches in a wider area of search.

Modelling rare species in terms of their association with common species

- The Threatened Plants Project (TPP) provides a fantastic new resource!
- Quadrat data from TPP allows us to quantify which common species grow with rare plants

TP	Count	TP	Count	TP	Count
Astragalus danicus	80	Gentianella campestris	131	Oenanthe fistulosa	106
Blysmus compressus	80	Groenlandia densa	40	Ophrys insectifera	43
Carex ericetorum	45	Gnaphalium sylvaticum	53	Polystichum Ionchitis	43
Cephalanthera longifolia	56	Herminium monorchis	11	Pyrola media	52
Crepis mollis	44	Hordeum marinum	30	Scleranthus annuus	68
Campanula patula	17	Juniperus communis	59	Sium latifolium	86
Chrysanthemum segetum	99	Meum athamanticum	67	Stellaria palustris	43
Coeloglossum viride	94	Melampyrum cristatum	11	Sibbaldia procumbens	37
Dianthus deltoides	44	Monotropa hypopitys	56	Viola lactea	57
Fallopia dumetorum	10	Melittis melissophyllum	70	Vicia orobus	81

Rare species data

- Revisited sites where species previously recorded
- 2X2 m quadrats centred on the rare species
- At least 1 quadrat per site
- Initial analysis of 6 species and their associates

Wider GB survey data

Dataset	Reference	Date	Geographical	Source	Number of
		recorded	scope		quadrats
National	Rodwell	1965-1980	Great Britain	I.M. Strachan	31266
Vegetation	(1997) et			(JNCC)	
Classification	seq.				
Countryside Survey	Smart et al.	1998/1999	Great Britain	CEH	7221
2000	(2003)				
Key Habitats survey	Hornung et	1995	Great Britain	CEH	548
	al. (1996)				
The 'Bunce'	Kirby et al.	1971	Great Britain	CEH	1648
Woodland Survey	(2005)				

Astragalus danicus

Most common associates in 2008 survey

Species	%	Species	%
Lotus corniculatus	59	Bromopsis erecta	15
Plantago lanceolata	58	Plantago coronopus	15
Galium verum	54	Carex flacca	14
Festuca rubra	46	Helianthemum numm.	14
Thymus polytrichus	31	Luzula campestris	14
Armeria maritima	28	Anthoxanthum odoratum	13
Koeleria macrantha	26	Anthyllis vulneraria	13
Achillea millefolium	25	Arrhenatherum elatius	13
Trifolium repens	24	Centaurea nigra	13
Cerastium fontanum	20	Dactylis glomerata	13
Festuca ovina	20	Hypochaeris radicata	13
Linum catharticum	19	Ranunculus bulbosus	13
Briza media	18	Campanula rotundifolia	11
Taraxacum officinale	18	Carex arenaria	11
Agrostis capillaris	16	Holcus lanatus	11
Senecio jacobaea	16	Pilosella officinarum	11
Brachypodium pinnat.	15	Sanguisorba minor	11

We rely on sampling intensity to describe associations in different habitats

Analytical issues:

- A very common species could grow with rarity all the time but be very common without the rarity
- Multivariate methods don't necessarily help
 - Because we would have to combine and interpret axes
 - Because we want to select a subset of indicators suited to less expert botanists
 - Because we want indicator A to be independent of bias in indicator B
- Further options:
 - Bayes Theorem
 - Likelihood ratios from clinical testing

Restricting the sampling domain:

- We want to condition on probability of finding the rare species (r) within the wider niche space of the neighbour (n)
- Define a set of quadrats from the wider survey data that contained any of the neighbours

 (n) of the rare species (r)
- Exclude non-neighbours (nn)

Application of Bayes Theorem:

- We want to know the probability of the rare species occurring given a neighbour species.
- Example:
- We combined the contextual GB data and the TPP data to define the probability that a rare (r) species will be present when a neighbour (n) species is present, as follows;

$$P(r|n) = \frac{P(n|r) * P(r)}{(P(n|r) * P(r)) + (P(n|r') * P(r'))}$$

Results: In(Bayes probabilities) for 6 rare species:

Gentianella campestris

Oenanthe fistulosa

Polystichum lonchitis

Blysmus compressus on the Orton to Appleby road in Cumbria:

 Growing with Potentilla anserina, Elytrigia repens, Agrostis stolonifera, Polygonum aviculare, Matricaria discoidea, Holcus lanatus

Results: How typical is the new quadrat as a location for Blysmus?

 Neighbours do not suggest atypical conditions although species richness was unusually low (mean = 24 per quadrat in TPP dataset)

Conclusions:

- Approach could be extended to other TPP species.
- Because each neighbor is treated individually the method lends itself to campaigns involving volunteers of varying experience.
- This also means that the influence of biased recording in the TPP and GB datasets is minimized.

Thank you for listening. Ideas and suggestions welcome. (ssma@ceh.ac.uk)